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= J prob (A #,centric) prob (/x centric)d/z. (A 11) 
o 

With the MaxEnt assignment of (A7) and a Jeffreys 
prior for prob (/zlcentric), because the knowledge 
that a reflection is centric says nothing about its 
expected value, the integral of (A11) yields 

prob (Alcentric) ~ 1/A, for A > 0. (A 12) 

Equation (A12) is, of course, equivalent to (A10) 
with a change of variables. 

In conclusion, it can be seen that the Wilson 
distributions can easily be derived with the 
maximum-entropy principle. The acentric case arises 
from the imposition of a constraint on the expected 
value of the intensity of a general reflection, whereas 
the centric p.d.f, requires the additional knowledge 
that the structure factor must be real. If there is 
complete uncertainty as to the absolute scale of the 
data then, as expected, both the Wilson distributions 
revert to the form of the Jeffreys prior. 
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Abstract 

An atom is defined as a region of space bound by a 
surface of local zero flux in the gradient vector field 
of the electron density. The same boundary condi- 
tion defines a proper open system, one whose 
observables and their equations of motion are 
defined by quantum mechanics. Applied to a crystal, 
this boundary condition coincides with the original 
definition of the atomic cell in metallic sodium given 
by Wigner & Seitz. It is proposed that it be used to 
generalize the concept of a Wigner-Seitz cell, defin- 
ing it as the smallest connected region of space 
bounded by a 'zero-flux surface' and exhibiting the 
translational invariance of the crystal. This defi- 
nition, as well as removing the arbitrary nature of 
the original method of construction of the cell in the 
general case, maximizes the relation of the cell and 
the derived atomic form factors to the physical form 
exhibited by the charge distribution of its constituent 
atoms. The topology of the electron density, as 
summarized in terms of its critical points, also 
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defines the atomic connectivity and structure within 
a cell. Attention is drawn to the correspondence of 
the symmetries of the structural elements determined 
by the critical points with the site symmetries tabu- 
lated in International Tables for Crystallography. The 
atomic scattering factor is defined for an atom in a 
crystal and determined in ab initio calculations for 
diamond and silicon. The transferable nature of 
atomic charge distributions is demonstrated. It 
enables one to estimate a structure factor and its 
phase in a crystal using the density of an atom or 
functional group obtained in a molecular calculation. 
Atoms in a crystal, along with defects and vacancies, 
are identifiable with bounded regions of real space. 
Their properties are additive and are defined by 
quantum mechanics. 

I. Introduction 

The amplitudes of X-rays scattered by a crystal are 
determined by the electronic charge distribution. 
Two essential concepts are involved in the interpreta- 
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tion of the scattering patterns and their intensities 
obtained for a crystal: the translational invariance of 
the unit cell and the atom as the source of the 
scattering. Atomic scattering factors are used to 
make a comparison between the observed intensities 
and those calculated from an assumed arrangement 
of the nuclei in a crystal structure determination. 
Conventionally, the charge distribution of an atom 
in a crystal is taken to be that of a spherical isolated 
atom or that of a model refined from the isolated 
atom. This paper is concerned with the definition of 
a scattering factor for an atom in a crystal in a 
manner that preserves the translational invariance 
and space-filling properties of the Wigner-Seitz cell. 
This is achieved by proposing a generalization of the 
definition of a Wigner-Seitz cell to reflect the domi- 
nant topological property of the charge distribution, 
one which coincides with the variational definition of 
a quantum subsystem. 

As early as 1915, Bragg stressed that the under- 
standing of the scattering of X-rays by a crystal 
necessitated taking into account the effect of the 
distribution of electrons over a region whose dimen- 
sions are comparable with the wavelength of the 
radiation employed, that is, an atomic dimension 
(Bragg, 1915). He later made the following statement 
relating to the then recently observed 222 reflection 
in the diamond structure, which is forbidden by the 
spherical-atom model (Bragg, 1921): 'It is necessary, 
therefore, to suppose that the attachment of one 
atom to the next is due to some directed property, 
and the carbon atom has four such special directions: 
as indeed the tetravalency of the atom might sug- 
gest.' Later experimental work did indeed verify the 
existence of the tetrahedral nature of the atomic 
charge distributions in the diamond structure, studies 
that, along with those on silicon (G6ttlicher & 
W61fel, 1959; Dawson, 1967), were the forerunners 
of the experimental determination of the charge den- 
sity by accurate X-ray diffraction methods, as 
recently summarized by Jeffrey & Piniella (1991). 

The requirements for obtaining a physically and 
mathematically unique decomposition of the charge 
distribution of a crystal into its atomic components, 
one which determines the atomic symmetries and 
their associated directed properties, are given in § 2. 
These considerations lead one to conclude that an 
atom in a crystal should be defined in the same 
manner as an atom in a molecule: as a region of 
space bounded by a surface of zero flux in the 
gradient vector field of the electronic charge density 
(Bader & Beddall, 1972; Bader, 1990). Further sec- 
tions apply the topological theory of molecular struc- 
ture to the electron distribution in a crystal and 
apply the concept of an atom in a crystal to the 
definition and calculation of atomic form factors, 
with particular applications to diamond and silicon. 

Charge distributions of diamond and silicon and 
of the related zincblende structures BN, BP and AlP 
were calculated using the program CRYSTAL 
(Pisani, Dovesi & Roetti, 1988), a Hartree-Fock 
procedure for an infinite lattice, using a Gaussian 
basis set of the form 6-21G, augmented with a set of 
d functions (Binkley, Pople & Hehre, 1980; Pisani, 
Dovesi & Orlando, 1992). The topological analysis of 
the charge distribution and the properties of atoms 
in a crystal were obtained using suitably modified 
versions of the corresponding programs for atoms in 
molecules (Biegler-K6nig, Bader & Tang, 1982. 

2. Atoms in crystals 

Any decomposition of the space of a crystal that 
preserves the translational invariance of the lattice 
and that exhausts all of space is a mathematically 
acceptable partitioning. Physically, however, and 
from the point of view of imposing boundary condi- 
tions in solving Schr6dinger's equation for a periodic 
lattice, further constraints are required. This is 
exemplified in the classic study of metallic sodium by 
Wigner & Seitz (1933), who accomplished these goals 
by being the first to define an atom in a crystal. To 
obtain the wave function for the single valence elec- 
tron in each Na atom in this body-centred-cubic 
crystal, they satisfied both the mathematical and 
physical requirements by surrounding each nucleus 
(in this case, each lattice point) by a space-filling 
polyhedron that had the additional desirable 
property of reflecting the local symmetry of the cubic 
point group. This was done by constructing planes at 
the midpoints of and perpendicular to the lines link- 
ing one nucleus to its two sets of equivalent neigh- 
bours. Because of the translational symmetry of the 
crystal, the derivative of the ground-state wave func- 
tion of a free electron must vanish perpendicular to 
each plane of the resulting 14-sided polyhedron rep- 
resenting the crystalline Na atom, the condition 
frO" n = 0. These atomic polyhedra generate the unit 
cell that most closely approximates a sphere and 
Wigner & Seitz imposed the boundary condition that 
dO/3r= 0 at the surface of the sphere of equal 
volume in obtaining the solutions to the radial wave 
equation for a spherically symmetric potential. Slater 
(1934) later extended the method of Wigner & Seitz 
to take into account the actual shape of the crystal 
polyhedra. 

For the nodeless one-electron ground-state wave 
function, the periodic boundary condition satisfied 
by the polyhedral Wigner-Seitz cell, and indeed the 
condition defining the cell, can be alternatively stated 
in terms of the electron density p(r) as 

Vp(r)- n(r) = 0 V r E S(r), (1) 

where n(r) is the unit vector normal to S(r), the 
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surface of the cell. A region of space bounded by 
surfaces that locally satisfy this condition of exhibit- 
ing a zero-flux in 17p is also the definition of an atom 
in a molecule (Bader & Beddall, 1972; Bader, 1990), 
where p(r) is, in general, the charge density of an 
N-electron system 

p(r) = Nfdr'O*4t.  (2) 

The integration symbol fd r '  in (2) implies a sum- 
mation over all spin coordinates and the integration 
over the spatial coordinates of all electrons but one, 
whose coordinate is denoted r. This zero-flux surface 
condition leads to an exhaustive partitioning of the 
space of any system into a collection of mononu- 
clear, i.e. atomic, fragments because of the dominant 
topological property exhibited by the electronic 
charge distribution - that, in general, it exhibits local 
maxima only at the positions of the nuclei (Fig. l a) 
(Bader, 1990; Bader, Nguyen-Dang & Tal, 1981). As 
a consequence, a nucleus acts as the terminus for the 
paths of the gradient vectors of p that traverse its 
basin, leading to the definition of an atom as the 
union of a nucleus and its basin. The basin is sepa- 
rated from the basins of neighbouring atoms by 
zero-flux surfaces (Fig. l b). This definition applies to 

a free atom or to an atom bound in a molecule or in 
a crystal. 

An atom in a molecule or a crystal is an open 
system in that it can exchange charge and 
momentum across its interatomic surfaces. It is, 
therefore, equally important that (1) is found to be 
the boundary condition for the definition of a proper 
open system (Bader & Nguyen-Dang, 1981; Bader, 
1990) using Schwinger's (1951) variational principle 
of stationary action. They are termed proper since 
only the observables for such open systems are 
described by the correct equations of motion (Bader, 
1994). 

The expectation values of all observables are 
defined for a proper open system and the associated 
equations of motion yield the theorems governing 
their behaviour (Bader & Nguyen-Dang, 1981; 
Bader, 1990). For each choice of observable denoted 
0, the generator of a corresponding change in the 
action, one obtains an atomic theorem: setting d; 
equal to an electronic momentum operator 0 yields 
the atomic force theorem and an equation of motion 
for an open system; setting d; equal to the product of 
electronic position and momentum operators ~.0 
yields the atomic virial theorem and the definition of 

(a) 

":' ", . . ' : ; '1! ' ::,".. l i i l  
' . . ! !  . ,  , .  , ! ! ;  

./-..q I 

• . . . .  ' ' . . ,  ' ' ', " b - - / . , W . - -  " 
• , , . ~ ~  / " , ~  ~ 

• , o ~ .  e \  . ,,,j. 

. . . . .  , ;  ~ .  :..x.. / . , , ,  7, i ,  h . .  

(b) (c) 
Fig. 1. (a) Relief map of the electronic charge distribution in a (110) plane of diamond. The charge density p exhibits local maxima only 

at the positions of the nuclei that behave as (3, - 3) critical points. (b) Display of the trajectories traced out by the gradient vectors of 
p. The region of space traversed by trajectories terminating at a given nucleus, indicated by an open circle, is the atomic basin and an 
atom is the union of the nucleus and its basin. The saddles shown for p that link the nuclei in the foreground of (a) are critical points 
with one positive and two negative curvatures, (3 , -  1) or bond critical points, denoted by dots in (b). Arrows are shown for the pair of 
trajectories that terminate at one such bond critical point and define the intersection of an interatomic surface with this plane and for 
the pair that originate there and define the bond path. The trajectories terminating at a nucleus originate at (3, ÷ 3) or cage critical 
points, local minima in p (denoted by a full star), at (3, + 1) or ring critical points (denoted by an open star) and one from each bond 
critical point (denoted by a dot). The central cage critical point of the Vp map is visible in the relief map of p. The pair of trajectories 
originating at a bond critical point define the bond path - the line of maximum charge density linking neighbouring nuclei. Each C 
nucleus is linked by bond paths to four other C nuclei, two in the (110) plane and one above and the other below this plane to yield a 
tetrahedral structure. The resulting structure defined by the bond paths is indicated in (c). The saddles in p that link the nuclei in the 
foreground with those at the back are ring critical points and not bond critical points, both of which in this plane appear as (2,0) 
critical points. 
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the energy of the open system. Table 1 provides a 
summary of atomic theorems for generators that are 
fundamental in establishing the mechanics of an 
atom as a proper open quantum system (Bader & 
Popelier, 1993). The zero-flux surface of an atom 
is denoted S(r), the vector current density J(r), the 
quantum stress tensor tr(r) and the electronic kinetic 
energy of the atom T(S2). The divergence of a current 
density that appears in the local equations of motion 
obtained from Schrrdinger's equation of motion for 
an observable G appears as the flux in the same 
current density through the surface of the atom. This 
agreement in form and content of the local and 
open-system equations of motion obtains only for a 
proper open system (Bader, 1994). 

Since the zero-flux boundary condition stated in 
(1), when applied to an atom in a crystal, represents 
a generalization of the concept embodied in the 
original definition of a Wigner-Seitz cell, it is pro- 
posed that this name be applied to the proper 
systems found in solids. This identification of a 
Wigner-Seitz cell with a physical property of the 
system obviates a difficulty associated with the 
original construction of the polyhedral cell in that it 
does not lead to a physically unique decomposition 
in cases where more than one atom is associated with 
a lattice point. 

This point is illustrated by the shape of the C atom 
defined by the four interatomic surfaces comprising 
its zero-flux surface in the face-centred-cubic dia- 
mond structure, which contains two atoms per unit 
cell (Fig. 2). Although it is possible to use the same 
recipe of bisecting the distances to the nearest- 
neighbour lattice points, 12 for a face-centred-cubic 
lattice, with perpendicular planes for the construc- 
tion of a Wigner-Seitz cell (Slater, 1965), this con- 
struction does not reflect the basic form and 
symmetry of the charge distribution at the atomic 
level. Each of the four interatomic surfaces that 
separates the basin of a given C atom of.Y'd symme- 
try from its four bonded neighbours is seen to be 
curved with the form of a chaise-longue, as are the 
six such surfaces bounding the linked pair of atoms 
that constitute the unit cell, where a primitive unit 
cell, a topological Wigner-Seitz cell, is defined as the 
smallest connected set of  atomic basins that preserves 
the translational invariance of  the lattice. 

As a consequence of this definition, each atom 
exhibits the basic local (or site) symmetry of the 
crystal as determined by its distribution of charge, 
while the symmetry of the cell reflects the trans- 
lational invariance of the group of atoms that com- 
prises the cell. For example, while the space group of 
diamond is 07, each C atom is of,Y-d symmetry and 
the topological Wigner-Seitz cell is of ~ 3d symmetry 
(Fig. 2). Thus, while the topological definition given 
here will always reflect the physical symmetry 

Table 1. A tomic theorems for molecules and crystals 

Atomic  force theorem (~ = 1~ 

m f  dr aJ(r)/at = f d r f d r '  g t , ( _  V I?)gt + ~;dS(r)tr(r) • n(r) 
O t]  

Atomic  virial theorem t~ = f" li 

m f  d r r "  o~J(r)/at = 2T(O)  + f d r f d T ' g t * ( -  r" V I ? ) ~ +  ~ d S ( r ) r "  tr(r) • n(r) 
o /2 

Atomic  torque  theorem (~ = t × [i 

m f d r r  × o~J( r ) /a /=  f d r f d ~ - ' g ' * ( - r  × V f ' ) q  t -  § d S o ' ( r )  × r ' n  
/2 /'~ 

Atomic  current  theorem G = i ~ 

f drr ap(r)/at = f dr J( r )  - § d S J ( r ) r "  n(r) 
f /  /2 

Atomic  cont inui ty  theorem (~ = .~ 

f dr  ap(r)/Ot = - ~ d S J ( r ) .  n(r) 
12 

Atomic  power  theorem t~ = ~2/2m, writ ten wi thout  l/2m 

f drc~p~(r)/St = fdr fd~"(h/ i ) [ (~ irq  ~' - '/1" Vale)" 171;'] + ~dSRe[J~( r ) ]  
1"1 f l  

tr(r) = (h2 / 4 m ) f d r'[ 17 Ir gt ,  ) ~ _ Ir vlt, Ir ~ _ Ir ~ V qt ,  + ~ I7 Ir g,] 

J(r)  = ('h/2mO f dr'( g t* I r ~ -  gtirqt,) 

imposed on the cell by the distribution of charge 
throughout the crystal, it will not, in the general 
case, preserve the full point-group symmetry of the 
lattice. Some may regard the preservation of this 
latter symmetry to be one of the most important 
features of the conventional definition, and here we 
acknowledge the view of a referee that use of the 
name Wigner-Seitz should be so restricted. 

Starting from the original definition of Wigner & 
Seitz for sodium metal, one can follow two paths to 
obtain a representation of the smallest space-filling 
volume for a crystal in the general case. One can 
apply the same geometrical method of construction 
starting from any lattice point, thereby preserving 
the lattice symmetry, the abstract symmetry of the 
crystal, but possibly losing its physical symmetry in 
real space. (The geometrical construction is the way 
to obtain the first Brillouin zone in reciprocal space.) 
Or, one can follow directly in the path of Wigner & 
Seitz and define the cell by generalizing the boundary 
condition that they imposed in an ad hoc manner to 
obtain a quantum description of an Na atom in the 
real space of a crystal. It was the pursuit of physics 
by Wigner & Seitz that led them to a definition of a 
cell that has since been shown to coincide with the 
general solution to this problem in the many-electron 
case, using a variational principle of physics. The 
proposal to apply the name Wigner-Seitz cell to the 
topogical cell satisfying the boundary condition in 
the general case follows the same philosopy: to 
extend the usefulness of the definition by endowing 
the cell with the physical reality that accompanies its 
quantum description. 

This usefulness is exemplified by the observation 
that the properties of the proper open systems, as 
well as being additive to yield the corresponding 



718 A T O P O L O G I C A L  D E F I N I T I O N  OF A W I G N E R - S E I T Z  CELL 

values for the total system, are found to be transfer- 
able between molecules and in these instances have 
been shown to recover the measured properties of 
atoms in molecules (Bader, 1990). These include the 
energy and properties that measure the response of  a 
system to externally applied fields, the electric polari- 
zability (Bader, Gough, Laidig & Keith, 1992) and 
the magnetic susceptibility (Bader & Keith, 1993). It 
is this demonstrated agreement between measured 
and predicted properties that justifies the identifica- 
tion of the proper open systems with the chemical 
atom. The proper open systems are the most trans- 
ferable pieces of  system that can be defined in an 
exhaustive partitioning of real space and all the 
properties of a proper open system are found to be 
transferable to the same degree as its distribution of 
electronic charge. Thus, structure factors determined 
for a proper Wigner-Seitz cell in one crystal, or 
calculated for a fragment in a molecule, can be used 
in a structure determination of a crystal containing 
the cell or group in question. The use of a structure 
factor obtained for an atom in a molecule to describe 
the scattering by the same atom in a crystal is 
illustrated in this paper. 

Fig. 2. Top: the region of space bounded by the four interatomic 
surfaces of zero flux in Vp that define a C atom in diamond of 
Ja  symmetry. Middle: an interatomic surface in diamond 
defined by the trajectories of Vp terminating at the bond critical 
point, the point of maximum density at the centre of the 
surface. Also shown is the bond path defined by the unique pair 
of trajectories that originate at the critical point. There is a cage 
critical point at each of the six vertices of the surface with a ring 
critical point lying midway along each edge. Each vertex is 
shared by ten atoms, each edge by six. Bottom: a bonded pair of 
C atoms defining the Wigner-Seitz cell of diamond of 2 aa 
symmetry, drawn to smaller scale. The threefold axis is directed 
out of the page through the central vertex. 

3. Structure in crystals 

The word connected appearing in the definition of a 
unit cell is used in the usual sense to imply that the 
atoms comprising the cell are bonded to one another 
(Bader, Nguyen-Dang & Tal, 1981; Bader, 1990). A 
zero-flux surface shared by the basins of neighbour- 
ing atoms contains a critical point in p, a point rc 
where Vp(rc)= 0, at which one of  the three curva- 
tures of  p is positive, the other two being negative; a 
( 3 , -  l) or bond critical point. The set of  trajectories 
of Vp that terminate at the critical point at rc defines 
the interatomic surface (Fig. 2). A unique pair of  
trajectories originates at each bond critical point, 
with each trajectory of the pair terminating at a 
nucleus of a neighbouring atom. They define a line 
linking the nuclei of the two atoms sharing a 
common surface along which the charge density is a 
maximum with respect to any neighbouring line 
(Figs. 1 and 2). Such a line when present in an 
equilibrium geometry is called a bond path and its 
presence fulfils the necessary and sufficient condi- 
tions that two atoms so linked be bonded to one 
another. The network of bond paths so generated, 
the molecular structure, has been shown to recover 
the bonded structures of molecules (Runtz, Bader & 
Messer, 1977; Bader, 1990). In the diamond struc- 
ture, each carbon nucleus is linked to four neigh- 
bouring nuclei by bond paths, as anticipated by 
Bragg (192 l) and illustrated in Fig. l(c). The applica- 
tion of  the definition of  structure in terms of a 
network of bond paths requires knowledge of the 
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electron density. The bond-valence model of Brown 
(1977, 1992), which is widely used to assign a chemi- 
cal structure to inorganic solids, on the other hand, 
has a purely empirical basis couched in terms of 
atomic and bond valences. A comparison of the 
structures obtained using the two approaches should 
better our understanding of the bond concept. 

The trajectories that terminate at a (3 , -  1) or bond 
critical point and define an interatomic surface 
orginate at local minima in the electron density that 
are (3, + 3) or cage critical (c) points and at (3, + 1) or 
ring critical (r) points, the electron density being a 
minimum in a ring surface. These two critical points, 
together with the bond critical (b) points and the 
local maxima at the positions of the nuclei (n), 
pseudo-(3,-  3) critical points, represent the four pos- 
sible critical points of rank three (Collard & Hall, 
1977). The topology of the electron density and its 
change with nuclear displacements, as reflected in the 
dynamics of its associated gradient vector field, yield 
a theory of molecular structure and structural sta- 
bility (Bader, Nguyen-Dang & Tal, 1979, 1981). The 
use of critical points in the analysis of the electron 
density, without their identification with elements of 
structure, was described by Smith, Price & Absar 
(1977) and, for the case of crystals, Johnson (1977). 
Early analyses of experimental charge densities 
obtained from X-ray analysis using the theory of 
molecular structure were given by Lau, Bader, 
Hermansson & Berkovitch-Yellin (1986), Lobanov, 
Tsirelson & Belokonava (1988) and Kappkhan, 
Tsirelson & Ozerov (1989). Recent applications are 
described by Jeffrey & Piniella (1991) and by Destro, 
Bianchi, Gatti & Merati (1991). 

One easily shows (Zou, 1993) that the Poincar+- 
Hopf relation governing the type and number of 
critical points for an extended system is given by 

n -  b + r -  c = 0, (3) 

a result first given by Johnson (1977). The critical 
points in the calculated densities for diamond and 
the homeomorphic zincblende structures AB serve as 
examples of the application of (3). There are two 
nuclei in each Wigner-Seitz cell and each is linked by 
four bond paths to its neighbours, one between the 
nuclei in the cell and six to neighbouring atoms, 
yielding n = 2  and b = ( 1 + 6 / 2 ) = 4 .  Each pair of 
bond paths terminating at a nucleus contributes to 
two six-membered rings and one atom therefore 
participates in 12 rings, yielding 24/6 or four rings 
per cell and r = 4. Each nucleus participates in two 
ways in ten-atom cage structures: in one, two of its 
bond paths contribute, in the other, three do. There 
is a total of six cages of the first kind and four of the 
second for a given nucleus and therefore one atom 
participates in ten cages to yield c = 2(6/10 + 4/10) = 
2 cages per cell. This set of values for the structural 

Table 2. Values of bond, ring and cage critical points 
for crystals in atomic units and their correlation with 

bulk properties 
One a tomic  unit o f  d e n s i t y = 6 . 7 4 8 e A  3 and o f  17Zp = 

24 .10e  A -5 

Crystal C BN BP Si AlP 

P6 0.263 O. 152 O. 130 0.092 0.056 
p, ( x 102) 2.060 1.793 0.947 0.434 0.449 
Pc~ ( x 102) 1.281 1.153 0.600 0.237 0.247 
Pc2 ( x 102) 0.898 0.501 0.235 
172p,, ( x 102) 7.493 7.445 2.363 0.915 0.905 
E (Hartrees)* 0.555 0.498 0.383 0.345 0.317 
co (THz) 39.9 a 3t.62 ~ 23.9 b 15.53 ° 13.17 ~ 
B (GPa) 443 c 3676 1736 99 c 86 a 

References: (a) Weyrich,  Brey & Christensen (1988); (b) 
Wentzcovi tch,  Chang  & Cohen  (1986); (c) Chang  & Cohen  (19850; 
(d) Zhang  & Cohen  (19850. 

* All values f rom Orlando,  Dovesi,  Roett i  & Saunders  (1990) 
and corrected for  zero-point  energies. 1 Har t ree  = 1 a.u. o f  energy. 

parameters satisfies (3). There is only one type of 
ring in the zincblende structures AB but two types of 
ten-membered cage corresponding to (4A,6B) and 
(6A,4B). All cages in both types of structure are of 
.Ya symmetry. 

International Tables for Crystallography (Hahn, 
1983) can be used as an aid in locating all of the 
critical points in a crystal, a point first made by 
Johnson (1977). The site symmetries contained 
therein correlate with the symmetries of the critical 
points that determine the structural elements. In 
diamond, for example, according to the table for the 
space group Fd3m (07, No. 227), two nuclei in a 
primitive cell are located at the position labelled a, 
four bond critical points at position c, four ring 
critical points at d and two cage critical points at b. 
For the zincblende structures, one uses the table for 
F43m (T 2, No. 216). The A and B nuclei are located 
at the a and c positions, respectively, bond and ring 
critical points at positions e, with different values for 
the parameter x, the cages (4A,6B) at positions b and 
(6A,4B) cages at d. 

Table 2 lists the properties of the density at the 
critical points in the diamond and zincblende struc- 
tures; Pb is the value of p(r) at the bond critical 
point, pr the value at the ring critical point and Pc 
and 172pc the corresponding values at the cage 
critical points, the latter values averaged over the 
two kinds of cage critical points in the AB structures. 
The net charges on the atoms in the AB structures, as 
determined by an integration of p over the basin of 
the atom and its subtraction from the nuclear charge, 
are _+ 2.4 e for both BN and AlP, and _ 1.6 e for BP. 
The populations indicate that the relative electro- 
negativities of the group III and V elements from the 
second row are the same as for their third-row 
congeners, while the third-row element P is only 
two-thirds as electronegative as the second-row 
element N from the same family. 
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Eberhart, Donovan, MacLaren & Clougherty 
(1991) have used the theory of structure to relate the 
bulk mechanical properties of metals and alloys to 
the properties of p(r) at its critical points. To illus- 
trate the existence of similar relationships in the 
diamond and zincblende structures, Table 2 includes 
values of their binding energies E, transverse optical 
frequencies to and bulk moduli B. The value of the 
density at a bond critical point, Pb, provides a 
measure of bond order and bond strength in mol- 
ecules and is found to provide a similar measure in 
solids. The bulk properties E, w and B exhibit the 
same trend in values as pb, decreasing from a maxi- 
mum in diamond to a minimum in AlP. The quantity 
to is the frequency associated with a bond stretch and 
is expected to correlate directly with Pb. The bulk 
modulus B = (AP/A V)/V or modulus of volume elas- 
ticity has the dimensions of pressure or energy den- 
sity. The Laplacian of p, the sum of the three 
curvatures of p, occurs throughout the theory multi- 
plied by h-2/4m and the quantity (h-2/4m)V2p has the 
dimensions of energy density, the same as B. Eber- 
hart, Donovan, MacLaren & Clougherty (1991) have 
related the bulk modulus of close-packed metals to 
the curvature of Pb parallel to the bond path. Rela- 
tive to the body-centred-cubic (b.c.c.) metals, the 
diamond and zincblende structures are relatively 
open, with the density attaining its minimum values 
at the cage critical points. Compressing the crystal 
changes the volume of the cages and the larger the 
curvature of the density at the cage critical point, the 
more resistant is the crystal to a compression, the 
values of VZpc exhibiting the same trend as those of B. 

Using the structural relationship in (3), one finds 
that an atom at the b.c.c, lattice point can be linked 
by bond paths to its six next-nearest neighbours, as 
well as to its eight nearest neighbours. In this struc- 
ture, an atom is bounded by 14 interatomic surfaces, 
in agreement with the original definition of a 
Wigner-Seitz cell for a b.c.c, lattice. Eberhart, 
Donovan, MacLaren & Clougherty (1991) find this 
pattern of bond paths, that is, this structure, to be 
predicted by the calculated charge distributions of 
b.c.c, transition metals and have also demonstrated 
the absence of bond paths to second-nearest neigh- 
bours in metals possessing the face-centred-cubic 
(f.c.c) lattice, a result again in agreement with (3). 
The topological analysis has been applied by 
Eberhart, Clougherty & MacLaren (1993) to the 
differing ductility of intermetallic alloys CuAu and 
TiA1 and by Eberhart, Donovan & Outlaw (1992) to 
the diffusivity of O atoms in group IB transition 
metals. Mei, Edgecombe, Smith & Heilingbrunner 
(1993) have analysed the topology of the theoretical 
charge densities and the structures they predict for 
the b.c.c, lattices of lithium and sodium, results that 
are discussed in more detail below. 

4. Atomic basis of the elastic X-ray scattering from 
crystals 

If one keeps only the first-order terms in the pertur- 
bative development of the interaction between 
X-rays and the electrons of a crystal, the measurable 
differential cross section of the elastically scattered 
X-rays can be expressed in terms of the scattering 
caused by a single free electron, the Thomson- 
scattering cross section To, modified by the square of 
a term ~sr(k- k') representing the Fourier transform 
of the electron-density distribution of the crystal: 

do-/d~Q = T o l J ( k  - k')l  2. (4) 

The Fourier transform or scattering amplitude is 

, Y ( k -  k') = fdrp(r)exp i(k - k') • r, (5) 

where the wave vectors of the incident and elastically 
scattered X-rays are related by Ikl--Ik'l. The scat- 
tering amplitude can be equated to the amplitude of 
the scattering from one cell in the crystal, repeated 
over each lattice point. The Laue condition for dif- 
fraction is met when Ak/2~-= ( k -  k')/2~- equals a 
reciprocal-lattice vector G of the crystal, where G = 
hA + kB + lC. In this case, the scattering amplitude 
from a single unit cell expressed in terms of the 
fractional coordinates x, y and z is given by 

F(G) - F(hkl) =~drp(r )  exp 2~-i(hx + ky + lz), (6) 

which is the so-called structure factor. The cell 
denoted by S2o is taken to be the primitive cell 
composed of the smallest set of connected atomic 
basins satisfying the condition of translational 
invariance, a topological Wigner-Seitz cell. This con- 
struction maximizes the relation of the cell to the 
physical form and symmetry exhibited by the charge 
distribution of the atoms making up the crystal, as 
illustrated in Fig. 2 for the diamond crystal. Any 
function invariant under a lattice translation can be 
expanded in a Fourier series and, in particular, the 
charge distribution of a crystal can be expressed as 

p(r) = V-~'.F(hkl)exp2~'iG'r, (7) 
hk~ 

where V is the volume of a unit cell. 
The scattering amplitude for a crystal of N cells is 

thus determined by N times the structure factor for a 
single cell. The structure factor in turn is given by a 
sum of contributions from each atom j in the cell ~2o. 
This contribution, called the atomic form factor 
f(j ,G), is determined by an integration of the appro- 
priate density over the basin of the atom, 

f ( j ,G)  = fdrp(r,) exp 2~-iG • rj, (8) 
J 

where the coordinate rj = r - Rj is referenced to the 
nucleus of atom j with position coordinate Rj. An 
atomic form factor is the integral of the electron 



P. F. ZOU AND R. F. W. BADER 721 

density over the atom, weighted by the phase factor 
appropriate for a given reflection. For h = k = 1 = 0, 
that atomic form factor equals the average electron 
population of the atom in the crystal 

f(j ,O) = N ( j ) =  f drp(r/). (9) 
J 

The structure factor, expressed in terms of the 
atomic form factors, is 

F(G) = Zf ( j ,G)  exp 2 t r ig"  R/. (10) 
J 

This expression for the structure factor is formally 
the same as that used in the conventional treatments, 
wherein the charge distribution over the unit cell is 
expressed as a superposition of atomic contributions, 
contributions that overlap one another within the 
cell and extend over into neighbouring cells. The 
expression given in (10) preserves the number of 
electrons within the cell by using nonoverlapping 
atomic contributions. The form of (10) is a conse- 
quence of the topology of the charge density par- 
titioning a crystal into a set of quantum open 
systems. 

5. Atomic scattering factors in diamond and silicon 

The integers of the reciprocal-lattice vector G(hk/) 
must be all even or all odd for a reflection to occur in 
the f.c.c, lattice of diamond or silicon. The reflections 
fall into three classes; those with h + k + 1 = 4n, 
4 n _  1 and 4n + 2 (Kittel, 1986). The primitive unit 
cell contains two atoms with nuclear coordinates 

[1 I I~ ( _  1,_ ~,_ ~) and ~,~,~ with the origin taken at the 
inversion centre. Equation (10) gives the scattering 
amplitude of a Wigner-Seitz unit cell to be 

F(G) = f p(rl) exp (2tr ig • r0drl 
I 

+ fp(r2)exp(27riG'r2)dr2. (11) 
2 

t! ! !~ Atom 2 is related to atom 1 by translation ~.4,4,4} 
followed by an inversion at nucleus 2. The atomic 
form factor of atom 1 can alternatively be expressed 
as f~ = A + iB. The inversion relation between atoms 
1 and 2 then yields fz  = A -  iB and the total scat- 
tering power from the primitive unit cell can be 
written as 

F(G) = exp [-7r i (h  + k +/)/4](A + iB) 

+ exp [Tri(h + k +/)/4](A - iB) 

= 2A cos [rr(h + k +/)/4] 

+ 2Bsin [Tr(h + k +/)/4]. (12) 

The 'forbidden' 222 reflection belongs to the 4n + 2 
set for which (12) gives 

F(4n + 2)=  2 ( -  1)nB. (13) 

The quantity B, which determines the noncentro- 
symmetric component of the atomic charge density, 
can be written as 

277" q'i" 

B = f dq~ f sinOdO~dS(rs)p(r~)sin(27rG'rl)~dra, 
0 0 

(14) 

where the radial integral is from the origin to the 
value of rl on the surface of the atom, and where A, 
the centrosymmetric part, is given by the correspond- 
ing cosine function. Because of the J d  symmetry of 
the atom, A or B can be evaluated over a reduced 
region of the atomic basin, B for example being 

~" rr/2 

B = f d~o f sinOdO~dS(rs)p(rO 
0 0 

× [sin 2rc(hx + ky + lz) + sin 27r(hx - ky - lz) 

+ sin 277"(- hx + ky - / z )  

+ sin 2 r r ( - h x  - ky +/z)]~dr l .  (15) 

The C and Si atoms in the crystal, unlike their 
spherical-atom counterparts, have no inversion sym- 
metry and B does not necessarily vanish. However, 
the value of B is determined entirely by the departure 
of the atom's charge distribution from spherical sym- 
metry and in general 4n + 2 reflections are weak and 
some, like 200, are totally absent. This is a result of 
the interference occurring within the basin of an 
individual atom, as happens whenever at least one of 
h, k or / is zero. 

With the program C R Y S T A L  and the basis set 
described above, the value of F(222) for a vibration- 
less diamond crystal, the static structure factor, with 
the lattice constant set equal to the experimental 
value of 3.5667 A, is calculated to be 1.207 e for the 
eight C atoms in the conventional unit cell, the unit 
used throughout this section. This agrees with the 
static value of 1.208 (80)e (Aleksandrov, Tsirelson, 
Reznik & Ozerov, 1989) obtained from the experi- 
mental scattering factor (G6ttlicher & W61fel, 1959). 
The R factor, which provides a measure of the 
overall agrement between the calculated and the nine 
experimentally measured structure factors fol dia- 
mond, is found to be 0.023. 

The basin of the central C atom in neo-pentane is 
totally enclosed by the interatomic surfaces shared 
with four tetrahedrally linked C atoms and it can 
serve as a model of the atom in diamond. The charge 
distribution for this atom can be determined in a 
calculation using a relatively large basis set, in which 
the C-C bond lengths in the molecule are fixed at the 
value of 1.5445 A found in the crystal. The vatae of 
F(222) is calculated to be 1.064. The C atom in this 
case has an average population of 5.817e, as 
determined by the integration of p(r) over its basin, 
and the value of F(222) normalized to six electrons is 
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increased to 1.087. The phase angles for diamond are 
either zero or rr depending upon choice of origin. 
The phase for the 222 reflection is predicted to be 
zero using the crystal or the molecular C atom, a 
result in agreement with the phase obtained in the 
refinement of the experimental data. Atoms in a 
given valence state and their properties are frequen- 
tly transferable to the extent found here for carbon. 
Even the shape of the C-C interatomic surface in 
diamond (Fig. 2) is the same as that found in neo- 
pentane or ethane. The R factor for diamond using 
the atomic form factors obtained for the central 
carbon in neopentane is 0.023, the same as that 
obtained by a direct calculation for the crystal, using 
a smaller basis set. 

Both experiment (Sakata & Sato, 1990) and theory 
(Orlando, Dovesi, Roetti & Saunders, 1990) show 
the charge distribution of crystalline silicon to be 
exceptional in that the charge density exhibits local 
maxima located midway between the nuclei. Such 
maxima behave as non-nuclear attractors in the 
gradient vector field of p(r) and give rise to pseudo- 
atoms in the crystal (Fig. 3). Pseudo-atoms were 
first found in clusters of group I metal atoms 
(Gatti, Fantucci & Pacchioni, 1987; Cao, Gatti, 
MacDougall & Bader, 1987). The charge density at 
the local maximum in a pseudo-atom exceeds that at 
the neighbouring bond critical points that link it to 
the neighbouring atoms by only small amounts. 
I'hus, the charge density in the central region 
between nuclei linked by bond paths to a pseudo- 
atom is relatively flat with p(r) exhibiting only small 
curvatures, compared with those exhibited by p(r) at 
the critical point of the bond path linking two nuclei 
directly. Table 3 compares the values of p(r) and its 
curvatures, ai, at the non-nuclear attractor in silicon 
with those at the bond critical points of diamond and 
silicon. The small curvatures associated with the 
charge maximum of a non-nuclear attractor imply 
that the density has a low kinetic energy per electron 
(Cao, Gatti, MacDougall & Bader, 1987) and that it 
is therefore loosely bound. This follows from the 
local statement of the virial theorem (Bader, 1990) 

(h- 2/4m) V2p(r )  = 2G(r) + ~ (r), (16) 

where G(r) is the kinetic energy density, defined as 
( l l2m) fdr ' (~ )* '~O>O,  and ~ ' ( r )<0 is the 
potential energy density, the virial of the local 
Ehrenfest force exerted on the electrons. Silicon 
possesses pseudo-atoms and is a semiconductor. 
Diamond, with the same lattice structure but with 
no pseudo-atoms, is an insulator. The value of 
172p(r) at a bond critical point in diamond, com- 
pared with the corresponding value for silicon (Table 
3), from (16) demonstrates the much tighter binding 
of the valence charge density in diamond compared 
with that in silicon. 

This analysis of the electron density in the clusters 
of lithium and sodir~m suggests a model of group I 
metals wherein the positively charged atoms with 
localized charge distributions are bound by an inter- 
meshed network of negatively charged pseudo- 
atoms, whose loosely bound and delocalized elec- 
tronic charge is responsible for the binding and the 
conducting properties of the metals. 

The calculated electron densities for the b.c.c. 
lattices of lithium and sodium obtained by Mei, 
Edgecombe, Smith & Heilingbrunner (1993) using 
the program CRYSTAL do indeed predict the pres- 
ence of pseudo-atoms in both crystals. In b.c.c. 
lithium, the pseudo-atoms are connected by bond 
paths as in the metallic clusters, but not in b.c.c. 
sodium. What is important for the understanding of 
the properties of the systems in which pseudo-atoms 
are found is not so much their presence, as the 
finding that the distribution of electronic charge in 
the interatomic valence region is diffuse, loosely 
bound and nearly devoid of curvature. 

An Si atom and a pseudo-atom for the crystal are 
displayed in Fig. 4. The interatomic surfaces for an 
Si atom, like those for a C atom in diamond, are 
curved in the form of a chaise-longue, but in this 
case the surfaces are concave since a pseudo-atom, 
with a finite volume and an average electron 
population of 0.958, links every pair of neighbouring 
Si atoms. Unlike an atom of diamond, a pseudo- 
atom exhibits W 3d symmetry and possesses a centre 
of symmetry. Structure factors were calculated for 
the experimental value of the lattice constant of 
5.431 A. The contribution to F(222) from the eight 

,. / . . i  .... .\,, . . . . .  . I 
' , X  

" / YA I  ~. \ -  , \ " \ - \  .>~ 

.\\ ~ \  ~ _ f  "~ ~ m  X '~  ~,. -- ~.. / / 7 / I .  

.'tt~\~, "i~,. , ..' , f " / '  D \ "~" ? ~  , ] i  k l  s 

Fig. 3. A display of the trajectories of 17p for the silicon crystal in 
the (110) plane. The Si atoms are not bonded directly to one 
another as are the C atoms in diamond (cf Fig. 2) but rather 
through intervening pseudo-atoms whose basins are defined by 
the trajectories of Vp terminating at the (3 , -3 )  critical point 
located midway between the Si nuclei. A pseudo-atom has an 
average electron population of 0.96. The value of p at its 
maximum exceeds that at the neighbouring bond critical points 
by only 0.2213 a.u. Thus, the density of a pseudo-atom that 
links pairs of Si atoms is nearly devoid of curvature and is of 
relatively low value, features characteristic of loosely bound 
electron density. 
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Table 3. Properties o f  electronic charge density p(r) at critical points in diamond and silicon lattices in atomic 
units 

Subscripts b and n denote bond critical point and non-nuclear attractor, respectively, with curvatures A~ = A2 perpendicular to the bond 
axis. 

Crystal Pt, ~.1 = A 2  A3  V2Pb Pn ~'1 = A 2  ~'3 V2Pn 

D i a m o n d  0 . 2 6 2 6  - 0 . 5 0 0  0 . 1 9 9  - 0 . 8 8 1  

S i l i c o n  0 . 0 9 2 2  - 0 . 0 8 3  0 . 0 7 8  - 0 . 0 8 8  0 . 0 9 3 5  - 0 . 0 8 5  - 0 . 0 0 0 2  - 0 . 1 5 0  

crystal Si atoms in the conventional unit cell is 
calculated using (9) and (10) to be -2 .030 .  There are 
four non-nuclear attractors in a Wigner-Seitz cell of 

• . 1 1 I 1 I 1 • SdlCOn, at (0,0,0), (0,z,z), (z,0,z) and (~,~,0), and their 
contribution to the scattering amplitude is given by 

F"(hk/) = f( '  + f~' exp [i~'(k +/)/2] 

+ f3 ~ exp [irr(h +/)/2] 

+f4" exp [iTr(h + k)/2]. (17) 

Since the pseudo-atom has a centre of symmetry, the 
imaginary contribution to its form f a c t o r f f  is identi- 
cally zero. Since the sum of any two indices h + k is 
always even for a reflection in a diamond lattice, 
(h + k)/2 is an integer in (17) and thus the contri- 
bution from the pseudo-atoms to the structure factor 
is always real. The contribution to the 222 reflection 
from the 16 pseudo-atoms in the conventional cell is 
calculated to be 3.610. The calculated static structure 
factor for the 222 reflection is thus 1.580, compared 
with the static values of  1.526 (Lu & Zunger, 1992) 
and 1.544 (Spackman, 1986) obtained from experi- 
ment. Note that the charge distribution of a pseudo- 
atom determines the phase and dominates the value 
of the structure factor for the 222 reflection, their 
presence isolating the dominant  tetrahedral com- 
ponent to the valence-charge distribution. The 222 
structure factor calculated for an Si a tom in the 
silicon analogue of neopentane with an atomic 
population of 14.0 is found to be 1.690. 

Lu & Zunger (1992) obtained a value for F(222) of 
1.344 in an ab initio calculation using the local 
density formalism. Sakata & Sato (1990) have used 
the maximum-entropy method to determine the 
charge density of the silicon crystal using 30 accur- 
ately measured structure factors (Saka & Kato, 
1986). The density so determined was then used to 
calculate the structure factors for the 'forbidden' 
reflections. This yielded a value of 1.527 for the 222 
reflection at room temperature. In their analysis, the 
charge density exhibits a maximum midway between 
pairs of Si nuclei with p ( r ) = 0 . 1 0 a . u .  This agrees 
satisfactorily with the value of 0.09 a.u. calculated 
for the local density maximum at the position of the 
non-nuclear at tractor (Table 3). 

The calculated atomic and pseudo-atomic contri- 
butions to the static structure factors are given in 
Table 4 for silicon, along with the corresponding 

values obtained from experiment (Lu & Zunger. 
1992; Spackman, 1986). The imaginary contribution 
from the atomic form factor, the B contribution, 
does or does not vanish depending on whether or not 
there is local interference over the basin of the atom. 
The value of F(000) is a measure of the goodness of 
the numerical integration used to determine the 
atomic form factors. The percentage error in its 

Fig.4. Top: region of space bounded by the four interatomic 
surfaces defining an atom in the silicon crystal. Its shape i~ 
homeomorphic with that for a C atom in diamond but thc 
surfaces are concave since each is shared with a pseudo-atom 
(bottom). The pseudo-atom is of ~ 3a symmetry, with the 
threefold axis passing through the two bond critical points. 
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Table 4. Calculated and experimental static structure 
factors and their atomic contributions for silicon 

R = E l f . ,  - FoxpllZIFoxpl = 4.1 x 10 -3 

Atomic contribution F(hkl) 
(hkl) A B F" Calculated Experimental 

(000) 12.0861 0.0000 1 5 . 3 3 3 0  112.0218 
(111) 10.4274 - 0.1865 - 2.8756 - 60.8068 - 60.6873 
(220) 8.8987 0.0000 2.2431 - 68.9464 - 69.2456 
(311) 8 . 3 0 2 3  -0.1304 2.5366 -45.1660 -45.3502 
(222) 7.9404 - 0.2537 3.6098 1.5802 1.5264 
(400) 7 . 6 3 3 3  0.0000 1.4450 - 59.6191 - 59.5944 
(331) 7.1556 - 0.0846 1.0690 41.0685 40.9969 
(422) 6.6004 - 0.0144 1.0259 53.8293 53.7296 
(511) 6 . 4 4 6 4  -0.0119 0.1096 36.5085 36.4194 
(333) 6 . 2 5 4 7  0.1263 1.6594 36.3266 36.3566 
(440) 6.0651 0.0000 0.1435 48.6639 48.3696 
(444) 5.0489 0.1441 0.5141 -39.8750 -39.8328 
(551) 4 . 8 0 1 3  -0.0153 -0.2202 -27.2940 -27.1936 
(642) 4 . 5 3 6 0  0.0272 - 0.1594 - 36.4471 - 36.4384 
(800) 4 . 1 7 3 5  0.0000 0.1678 33.5555 33.4112 
(660) 3 . 8 8 6 5  0.0000 0.6174 - 30.4748 - 30.9304 
(555) 3 . 8 5 4 0  -0.0508 -0.2368 21.1641 21.2692 
(844) 3.1530 - 0.0189 - 0.2973 24.9264 25.0800 
(880) 2 . 5 3 6 0  0.0000 0.4971 20.7848 20.2648 

value is 0.02% of the correct value of 8 x 14 = 112. 
The total electron population calculated for an Si 
atom and two pseudo-atoms is 14.0027 e, in error by 
0.0027 e. 

5. Concluding remarks 

The definition of a Wigner-Seitz cell in terms of the 
atoms in a crystal extends its usefulness and can 
increase our understanding of the properties of crys- 
tals. While only two atomic properties have been 
discussed here, atomic populations and form factors, 
the reader is reminded that every property of an 
atom in a crystal is defined, as illustrated in Table 1, 
and that each makes an additive contribution to the 
corresponding property of the total system. The 
zero-flux boundary condition enables one to go 
beyond the condition of translational invariance in 
the identification of the open systems that are physi- 
cally important in the study of the solid state. One 
can, for example, define and differentiate between an 
adsorbed atom and the adsorbing surface of a solid, 
between an atom in the bulk of a solid and one in its 
surface layer and between a defect atom and its host. 
In every case, one obtains a complete description of 
all observable properties of the solid in terms of its 
atomic contributions. The ability to separately define 
the contributions of an interior and a surface atom 
to the total energy, for example, is of importance in 
the emerging field of nanostructures. 

I~ addition to the above, the properties of the 
proper Wigner-Seitz cells reflect the transferability 
that is the operational characteristic of the atomic 
and functional-group model of matter. The charge 
distribution and hence the properties of a peptide 

group, for example, are transferable to a high degree 
from di- to polypeptides (Chang & Bader, 1992; 
Bader, Popelier & Chang, 1992; Popelier & Bader, 
1994). These groups, defined by their two amidic 
interatomic surfaces as INH-CHR-C(=O)I,  bear a 
zero net charge. Their charge distributions, 
determined in calculations on model systems, can be 
used to predict the van der Waals shape, the electro- 
static potential field and the structure factors of a 
polypeptide in terms of their atomic contributions. 
The method of atoms in crystals offers the oppor- 
tunity of comparing directly the form and properties 
of an atom or group as it occurs in different systems. 

We acknowledge the useful comments made by 
Professor V. G. Tsirelson of the Mendeleev Institute 
regarding this paper. 
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Abstract 

The thermal behaviour of oxygen in Czochralski 
(CZ) silicon and magnetic Czochralski (MCZ) silicon 
crystals was investigated by analysis of Pendell6"sung 
fringes based on the statistical theory of X-ray 
dynamical diffraction. The size and the density of 
oxygen precipitates were determined for different 
annealing temperatures and/or different times. It was 
observed that oxide precipitates in the samples 
increase in size and decrease in density with time 
during isothermal annealing at 1023 K. The pre- 
cipitation in MCZ silicon approaches saturation level 
after annealing for 250 h. It was found that the size 
of precipitates increases rapidly with annealing 
temperature in isochronal annealing for 18h. 
Comparison of the results of MCZ silicons with 
those of CZ silicons shows that MCZ crystals are 
thermally more stable. This suggests that magnetic 
fields can control the oxygen concentration 
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effectively and that the MCZ and CZ silicon have 
different thermal behaviours. A powerful technique 
for detecting microdefects of nanometre size and 
random distribution is described. 

1. Introduction 

Silicon crystals grown by the Czochralski (CZ) 
method or by the Czochralski method in a magnetic 
field (MCZ) contain supersaturated O atoms that 
come from the silica crucible. This high 
concentration of O atoms remains in metastable 
solid solution during the cooling of as-grown silicon 
ingots. Although there is a considerable amount of 
literature concerning the thermal behaviour of 
oxygen precipitates, the mechanism of their 
formation in silicon is still an important problem for 
ultra large scale integrated-circuit fabrication (Claeys 
& Vanhellemont, 1993). Since the spatial resolu- 
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